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A general theory is developed for the effect of molecular diffu- for the effects of diffusion to first order in D . A general
sion on the NMR signal obtained from magnetically heterogeneous formulation is utilized that allows an arbitrary sequence of
media in the limit of weak diffusion. The theory is based on a gradients and 1807 spin-flip pulses to be considered, permit-
rigorous expansion in the diffusion constant D , with the correction ting a direct application to many of the complex sequences
to first order in D being given explicitly for unrestricted, isotropic now employed for MR imaging.
diffusion. The expansion allows for an arbitrary sequence of field

The O(D) correction is shown to depend on two func-gradients and 1807 spin-flip pulses, making it applicable to a wide
tions, F0 and F1 , that are determined by the details of thevariety of NMR protocols. The theory may be useful for estimating
random magnetic field. As examples, explicit expressionsthe magnitude of diffusion effects and in determining some of a
are obtained for F0 and F1 for a Gaussian random field andmedium’s microscopic magnetic properties. q 1997 Academic Press

a field due to randomly distributed impurities. We also dis-
cuss in detail the effect of diffusion for the standard cases
of free-induction decay and spin echo. Finally, we demon-

INTRODUCTION
strate how a modified Carr–Purcell sequence can, in princi-
ple, be used to measure F0 and F1 .

The behavior of the NMR signal obtained from a magneti-
cally heterogeneous medium is currently of interest because

DEFINITION OF PROBLEMof its importance to MR imaging of the human body (1) .
In particular, quasi-random magnetic fields are generated by

This paper deals only with the transverse or secular relax-variations in the magnetic susceptibility within, for example,
ation effects due to the combination of a random static mag-the brain (2, 3) and bones (4–7) . In the brain, susceptibility
netic field and diffusion. In practice, the effect of other relax-differences due to changes in blood flow and blood oxygen-
ation mechanisms can often be approximated by includingation are the basis of the recently developed technique of
additional factors derivable, for example, from the phenome-functional imaging (8–11) .
nological Bloch equations (16) .A magnetically heterogeneous medium may be modeled

The free-induction-decay signal at a time T after an initialas consisting of a static random magnetic field and a ran-
907 spin-flip pulse can be written (17)domly distributed set of mobile spins that are subject to

diffusion. The mobile spins would typically correspond, in
S(T ) Å S0e

0 igB0T
»e0igeT

0dtB[r ( t ) ]
…diff./ran.fld. , [1]a physical system, to the hydrogen nuclei of water, and the

appropriate diffusion constant is that of a water molecule.
The NMR signal produced by such a system is affected by where S0 is the initial signal strength, g is the gyromagnetic

ratio, B0 is the magnitude of the uniform static field, B(r)both the random magnetic field and molecular diffusion.
Previous work has investigated NMR diffusion effects using is the magnitude of the random perturbation of the magnetic

field, and r( t) is a diffusion path. The angle brackets indicateboth mean field theory (12, 13) and numerical Monte Carlo
methods (14) . an average over both diffusion paths and the random field.

The derivation of Eq. [1] relies upon the random componentIn this paper, we describe a theory of the NMR signal
which is based on a rigorous expansion in the diffusion of the field being much smaller than the uniform component,

as is typically the case.constant D and hence valid in the weak-diffusion limit. This
limit is relevant to many physical situations, as diffusion A more general expression may be obtained by introduc-

ing a time-dependent external field gradient f ( t) and a 1807effects are often small. The theory is a natural extension of
the established theory of the static ( i.e., without diffusion) spin-flip function s( t) . The field gradient may be an arbi-

trary function of time. The spin-flip function can only takeNMR signal (15) . Our main result is an exact expression
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194 JENSEN AND CHANDRA

on the values {1 and hence is piecewise constant with each where V is the volume of the system and the random field
B may be evaluated at an arbitrary position due to the as-sign change representing an ideal 1807 spin-flip pulse. The

signal for an arbitrary sequence of gradients and spin flips sumption of translational invariance. Applying condition
[4] , Eq. [7] can be rewritten ascan then be written

S(T)Å S0e iue0 igB0a(T )
»e0igeT

0dt s( t ){B[r ( t )]/f( t )rr ( t )}
…diff./ran.fld. , S(T ) Å S0e iue0 igB0a (T )

»e0igBa (T )
…ran.fld. . [8]

[2]
Comparing Eq. [8] with Eqs. [5] and [6], we find the static
limit of the correction function to bewhere

F0(T ) Å i log{F0[a(T )]}, [9]
a(T ) Å *

T

0

dt s( t) [3]

where
and u is a real phase that depends upon the axes about which

F0(t) Å »e0itgB
…ran.fld. . [10]the 1807 spin flips are performed. The phase u changes only

during a spin flip and is usually of little significance. Assum-
ing the probability distribution that governs the random field The dimensionless function F0(t) is related to the probabil-
is translationally invariant, it is easy to show (in the infinite ity P(B) that at any given position the random field has a
volume limit) that S(T ) vanishes unless the condition value B by

*
T

0

dt s( t) f ( t) Å 0, [4] P(B) Å g

2p *
`

0`

dtF0(t)e itgB , [11]

is satisfied.
and so F0(t) is essentially the Fourier transform of P(B) .

Now define a correction function F(T ) so that
In the weak-diffusion limit, the important diffusion paths

r( t) deviate only slightly from the initial position r0 å r(0) .
S(T ) Å S0e iue0 igB0a (T )e0iF (T ) . [5] It is then valid to expand Eq. [2] in powers of [r( t) 0

r0] . The linear term vanishes by symmetry, assuming the
F(T ) is in general a complex function with its real and diffusion is invariant with respect to reflections, and so the
imaginary parts giving the phase shift and amplitude decay leading correction comes from the quadratic term. The de-
of the signal relative to the ideal case where both diffusion tails of this expansion are given in the Appendix.
and the random field are absent. For unrestricted, isotropic diffusion, the diffusion average

For a well-behaved random field, F can be expanded in of the quadratic term can be carried out explicitly with the
powers of the diffusion constant D as help of the theorem

F(T ) Å ∑
`

nÅ0

DnFn(T ) . [6] »[rj( t) 0 r0j][rk( t *) 0 r0k] …diff.

Å Ddjk( t / t * 0 Ét 0 t *É) , [12]
The n Å 0 term simply corresponds to the static result dis-

where djk is the Kronecker delta. For cases with restrictedcussed in (15) . In the following, we assume isotropic, un-
diffusion, the correlation function is more complex, but canrestricted diffusion and derive an explicit expression for the
in practice often be approximated by the form [12] if then Å 1 term, which gives the leading effect of diffusion for
diffusion constant is replaced by an apparent diffusion con-small D .
stant (18) . (If the diffusion is anisotropic, [12] is general-
ized by replacing Ddjk with a diffusion tensor Djk , and theGENERAL EXPRESSION FOR WEAK DIFFUSION
central results of this paper may be readily extended.)CORRECTION

Using [12], the n Å 1 term of expansion [6] is found to
If D Å 0, Eq. [2] reduces to be D times

S(T ) Å S0e iue0 igB0a (T )F 1
V * d 3r0e

0 igeT
0dt s ( t ) f ( t )rr0G F1(T ) Å ig 2

2 *
T

0
*

T

0

dtdt *Ét 0 t *És( t)s( t *)

1 {F1[a(T )] / f ( t)rf ( t *)}, [13]1 »e0igBa (T )
…ran.fld. , [7]
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195WEAK-DIFFUSION THEORY FOR HETEROGENEOUS MEDIA

with magnetic impurities. If each impurity generates a magnetic
field perturbation with a magnitude of the form l(r) , then

F1(t) Å [F0(t)]01
»ÉÇB(r0)É2e0 itgB (r0)

…ran.fld. . [14]

F0(t) Å expHr * d 3r[e0itgl (r ) 0 1]J , [20]By translational invariance, F1(t) is independent of the
choice of r0 . For t Å 0, Eq. [14] reduces to

and
F1(0) Å »ÉÇB(r0)É2

…ran.fld. , [15]

and so F1(0) is simply the mean square of the gradient of F1(t) Å r * d 3rÉÇl(r)É2e0itgl (r ) , [21]
the random field.

As shown by Eq. [13], F1 has two parts: one depending
with r being the impurity density. In deriving [20] and [21],on the random field through the function F1 and one de-
it is assumed that the impurity centers can be arbitrarilypending on the external gradients. Note that F1 does not
close. Results for the static NMR signal similar to Eq. [20]vanish in the absence of a random magnetic field. In fact,
are given in (15) .in this case it can be shown that F(T ) Å DF1(T ) , as all

the terms of the expansion [6] are zero for n x 1; Eq. [5]
then reduces to the well-known result for diffusion in the FREE-INDUCTION DECAY AND SPIN ECHO
presence of an external gradient (16, 17, 19) .

The decoupling of the external gradients and the random Let us now consider the evaluation of the general expres-
field is special to the n Å 1 term of expansion (6) and sion [13] for particular pulse sequences. Since s( t) is
greatly simplifies the analysis of the O(D) effect of gradient piecewise constant with És( t)É Å 1, it can be written as
sequences. In higher-order terms, the coupling between the
external gradient and the random field must be considered

s( t) Å ∑
Ns

jÅ1

(01)Ns/ja( t ; tj01 , tj) , [22](19, 20) .

GAUSSIAN AND IMPURITY RANDOM FIELDS
where Ns is the number of spin-flip pulses, including the
initial 907 pulse, tj ú tj01 , t0 Å 0, tNs

Å T , andAs examples, we determine the functions F0 and F1 for
two types of random magnetic fields.

The simplest model to treat is that of a Gaussian random
field, for which the probability of a particular field configu- a( t ; tj01 , tj) Å H1, if tj01 õ t £ tj;

0, otherwise.
[23]

ration B(r) is proportional to

e0eed3rd3r =B (r )C (r0r = )B (r = ) , [16] The function a(T ) defined by Eq. [3] then takes the form

where C(r) is an assigned function. Using standard methods,
a(T ) Å ∑

Ns

jÅ1

(01)Ns/j( tj 0 tj01) , [24]F0 and F1 may, in this case, be deduced as

F0(t) Å e0 (1 /2)Kg2t2
, [17]

and the integral in Eq. [13] that multiplies F1 can be written
aswhere

K Å »[B(r0)] 2
…ran.fld. , [18] I1(T ) å *

T

0
*

T

0

dtdt *Ét 0 t *És( t)s( t *)

and
Å 1

3
∑
Ns

jÅ1

( tj 0 tj01) 3 / 1
2

∑
Ns

jÅ1

∑
Ns

kÅ1

(01) j/k

F1(t) Å F1(0) Å »ÉÇB(r0)É2
…ran.fld. . [19]

1 ( tj 0 tj01)( tk 0 tk01)Étj / tj01 0 tk 0 tk01É.
Thus, the correction function F is completely determined to

[25]order D by just the mean squares of the random field and
its gradient.

Another model which has often been used to approximate The simplest pulse sequence is that which generates a
free-induction decay, for which Ns Å 1. In this case,physical systems is that of a random distribution of identical
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196 JENSEN AND CHANDRA

Assume that the random field B(r) consists of perfecta(T ) Å T ,
gradients of the form Gr(r 0 r0) with r0 being uniformly
distributed and G obeying a Gaussian distribution. One thenI1(T ) Å 1

3
T 3 , [26]

has

which implies that
e0iF (T ) Å 1

V S b

pD
3/2

* d 3Ge0bÉGÉ
2 * d 3r0e

0 iga (T )Grr0

F1(T ) Å ig 2

6
F1(T )T 3 . [27]

1 »e0 igeT
0dt s ( t ){[G/f ( t ) ]rr ( t )}

…diff. , [31]

Note that since F1(0) is, as indicated by Eq. [15], real and where 3/2b is the mean-square gradient. Carrying out the
positive, the effect of diffusion, at least for small T , is to integral over r0 shows that the NMR signal vanishes, in the
increase the strength of the NMR signal. This reflects an limit V r ` , unless a(T ) Å 0. For a(T ) Å 0, evaluating
effective smoothing out of the random field by diffusion the diffusion average and the integral over G leads to
and is closely related to the so-called motional narrowing
phenomenon (16, 17) .

Now consider a simple spin-echo sequence having Ns Å 0iF(T )Å0 3
2

lnF10D
g 2

2b
I1(T )G

2. Equations [24] and [25] then give

/D
g 2

2 *
T

0
*

T

0

dtdt *Ét0 t *És( t)s( t *)a(T ) Å T 0 2t1 ,

f ( t)rf ( t *)/D 2 g
4

4b F10D
g 2

2b
I1(T )G01

I1(T ) Å 1
3

T 3 0 2t1T
2 / 2t 2

1T . [28]

1 Z*T

0
*

T

0

dtdt *Ét0 t *És( t)s( t *) f ( t)Z2

. [32]At the spin echo time T Å 2t1 , Eq. [28] reduces to

a(T ) Å 0,
Expanding [32] in powers of D shows that a necessary
condition for the validity of a weak-diffusion approximationI1(T ) Å 0 1

6
T 3 , [29]

is

and we find
D

g 2

2b
ÉI1(T )É ( 1. [33]

F1(T ) Å 0 ig 2

12
F1(0)T 3 . [30]

Since for this model F1(0) Å 3/(2b) , [33] can be rewritten
as

Thus, diffusion decreases the signal intensity in this case.
Equation [30] is equivalent to the mean field result given
by (12). As a(T ) Å 0, F0 vanishes, and F1 gives the domi- D

g 2

3
F1(0)ÉI1(T )É ( 1. [34]

nant effect of the random field. It is also interesting to note
that for T Å (3 {

√
3) t1 , I1(T ) and hence F1(T ) are zero,

If it is further assumed that the external gradient f ( t) isimplying that the O(D) diffusion correction is absent. This
independent of time, then it can be shown that [34] is alsofact may be of use if it is desired that diffusion effects be
a sufficient condition.suppressed.

For more realistic models, it is reasonable to apply [34],
as long as it is regarded as a rule of thumb. Less precisely,ACCURACY OF WEAK-DIFFUSION CORRECTION
one can say that the weak-diffusion approximation should
be valid for sufficiently short times. In particular, one wouldThe accuracy of the NMR signal predicted using the weak-
expect that the weak-diffusion approximation to break downdiffusion correction [13] depends on the details of the ran-

dom magnetic field and on the sequence of pulses and gradi- when the typical diffusion length
√
6DT exceeds some char-

acteristic length of the random field, such as the correlationents. Therefore, a rigorous criterion for its validity must be
determined on a case-by-case basis. However, the nature of length or impurity size. Therefore, the weak-diffusion theory

is most likely to be accurate for systems with slowly varyingthe approximation provided by [13] can be illustrated by
considering a simple model that allows for an exact solution. random fields and for measurements with short echo times.

AID JMR 1178 / 6j1c$$$202 06-01-97 21:54:40 maga



197WEAK-DIFFUSION THEORY FOR HETEROGENEOUS MEDIA

MEASURING F0 AND F1 of the NMR signal for various values of Ns . Note that the
amplitude of an echo still decays exponentially with T , but

Assuming both that diffusion effects are observable and the decay constant h is generalized to
that the weak-diffusion approximation is accurate, the func-
tions F0 and F1 , which depend on the details of the random

h Å g 2

3
D[Re F1( tc ) ](Dt)2 . [39]field, can be, in principle, measured with a Carr–Purcell

sequence (16, 17) modified so that the external gradient is
not switched on until a time t Å tc after the initial 907 spin- An important physical system to which the above consid-
flip pulse. This technique then gives an experimental method erations could be applied is deoxygenated blood. Measure-
for determining microscopic characteristics of the magnetic ments of h for Dt Å 2 ms and tc Å 0 have been performed
field. by Brooks et al. (21) , using field strengths ranging from

First consider a conventional Carr–Purcell sequence of 0.02 to 1.5 T. They find that h depends quadratically on B0
Ns spin-flip pulses, Ns § 2, occurring at the times t0 Å 0 with a proportionality constant
and tj Å (2 j 0 1)Dt for 1 £ j £ Ns 0 1. (Recall that Ns

is the number of spin-flip pulses including the initial 907 h /B 2
0 Å 7.2 s01 /T2 . [40]

pulse.) With a constant external gradient, an echo forms
when T Å 2Dt(Ns 0 1), i.e., when condition [4] is satisfied. Assuming that Eq. [37] holds, we then have
At this time, Eqs. [24] and [25] give

F1(0) Å 3h
DB 2

0g
2(Dt)2 B 2

0 Å 0.030 m02 B 2
0 , [41]a(T ) Å 0,

I1(T ) Å 0 4
3

(Dt)3(Ns 0 1). [35] where we have used the values D Å 2.5 1 1009 m2/s and
g Å 2.675 1 108 s01 /T (15) .

As the magnitude of the field perturbation caused by aObserve that I1(T ) depends linearly on Ns . Equations [5] ,
deoxygenated blood cell is on the order of xB0 , where x É[6] , [13], and [25] then imply that after the factor involving
8 1 1008 (15) , Eq. [19] suggests thatthe external gradient is divided out, the signal amplitude A

behaves as

F1(0) Ç x 2B 2
0

l 2 , [42]
A(T ) Ç e0hT , [36]

with l being a length scale characterizing the spatial variationwhere
of the field. For Eqs. [41] and [42] to be consistent requires
that

h Å g 2

3
DF1(0)(Dt)2 . [37]

l Ç x√
0.03

m É 0.5 mm, [43]
A measurement of the decay constant of the exponential
then yields the value of F1(0) .

which is comparable to the distance over which the fieldNow assume that the external gradient is not switched on
produced by a red blood cell changes significantly (22) .until a time tc , 0 õ tc õ Dt , and afterward is maintained at

This agreement points to the possible validity of the weak-a constant value. An echo then forms when T Å 2Dt(Ns 0
diffusion approximation in this case. While for the field1) 0 (01)Ns tc , and one finds that
strengths used in (21) , it would most likely be difficult to
observe any change in F1 with tc , field strengths of 4 T or

a(T ) Å (01)Ns/1 tc , higher may well show an effect. Indeed Eq. [21], which
should hold approximately for blood cells, indicates that a

I1(T ) Å 0 4
3

(Dt)3(Ns 0 1) 0 1
3

(01)Ns t 3
c necessary criterion for a significant tc dependence is xB0gDt

Ç 1. For B0 Å 4 T and Dt Å 2 ms, xB0gDt É 0.17.
/ [1 / (01)Ns ] tc (Dt)2 . [38]

CONCLUDING REMARKS
This shows that the NMR signal depends on the random
magnetic field only through F0({tc ) and F1({tc ) , with the The central result of this paper is Eq. [13], which gives

the leading correction to the NMR signal due to molecularsign depending on whether Ns is even or odd. Therefore, F0

and F1 for a selected time can be inferred from measurements diffusion. This correction depends on the random magnetic
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198 JENSEN AND CHANDRA

field only through the functions F0 and F1 . In addition, Eq. To do the average over the random magnetic field, the
following identities are useful:[13] shows that to O(D) the effects of the random field and

the external gradients decouple, facilitating the analysis of
complicated gradient sequences.

»e0 igtB (r0)
ÇB(r0) …ran.fld. Å

i

gt
»Çe0 igtB (r0)

…ran.fld.Possible applications of Eq. [13] are to check the validity
of calculations based on static spins, to test numerical mod-
els, and under appropriate conditions, to predict experimen- Å i

gt
ÇF0(t) Å 0, [A4]

tal measurements. Furthermore, when a weak-diffusion ap-
proximation based on Eq. [13] is sufficiently accurate, F0(t)
and F1(t) , for given values of t, may be determined with and
a modified Carr–Purcell sequence, allowing microscopic
properties of the random magnetic field to be inferred.

»e0 igtB (r0)
Ç

2B(r0) …ran.fld.

APPENDIX Å K i

gt
Ç

2e0 igtB (r0)/ igte0 igtB (r0)
ÉÇB(r0)É2L

ran.fld.
In order to derive Eq. [13], the exponential appearing

inside the average in Eq. [2] is expanded about the initial Å i

gt
Ç

2F0(t)/ igtF0(t)F1(t)Å igtF0(t)F1(t) .
position r0 as

[A5]
e0 igeT

0dts( t ){B[r ( t ) ]/ f ( t )rr ( t )} Å e0 iga (T )B (r0)

In deriving [A4] and [A5], we have used the fact that F01 H1 0 ig *
T

0

dt s( t)[ÇjB(r0) / fj( t)][rj( t) 0 r0j]
is independent of r0 . Averaging [A3] over the random field
and applying [A4] and [A5] gives

0 ig

2 *
T

0

dt s( t)Ç jÇkB(r0)[rj( t) 0 r0j]
»e0 igeT

0dt s( t ){B[r ( t ) ]/ f ( t )rr ( t )}
…diff./ran.fld.

1 [rk( t) 0 r0k] 0 g 2

2 *
T

0
*

T

0

dtdt *s( t)s( t *)
Å F0[a(T )]H1 / Dg 2a(T )F1[a(T )] *

T

0

dt s( t) t
1 [ÇjB(r0) / fj( t)][ÇkB(r0) / fk( t *)]

1 [rj( t) 0 r0j][rk( t *) 0 r0k] / rrrJ , [A1] 0 D
g 2

2 *
T

0
*

T

0

dtdt *s( t)s( t *){F1[a(T )]

/ f ( t)rf ( t *)}( t / t * 0 Ét 0 t *É) / O(D 2)J .
where definition [3] and condition [4] have been used. In
[A1], the repeated indices j and k are summed from 1 to 3. [A6]
The diffusion average of the right side of [A1] can then be
performed explicitly using Eq. [12] and

Simplifying, with the help of Eqs. [3] and [4], [A6] reduces
to

»[rj( t) 0 r0j] …diff. Å 0, [A2]

»e0 igeT
0dts( t ){B[r ( t ) ]/ f ( t )rr ( t )}

…diff./ran.fld.which follows from reflection symmetry. One finds

Å F0[a(T )]H1 / D
g 2

2 *
T

0
*

T

0

dtdt *Ét 0 t *És( t)
»e0 igeT

0dts( t ){B[r ( t ) ]/ f ( t )rr ( t )}
…diff.Å e0 iga (T )B (r0)

1 s( t *){F1[a(T )] / f ( t)rf ( t *)} / O(D 2)J .1 H10 iDgÇ2B(r0) *
T

0

dt s( t) t0D
g 2

2 *
T

0
*

T

0

[A7]
1 dtdt *s( t)s( t *)[ÇB(r0)/ f ( t)]

From [6], one has the expansion for the correction factor1 [ÇB(r0)/ f ( t *)]( t/ t *0 Ét0 t *É)/ rrrJ .

e0iF(T ) Å e0 iF0(T ) [1 0 iDF1(T ) / O(D 2)] . [A8][A3]

The terms not shown in the expansion [A3] are of order D 2 Finally, comparing Eqs. [2] , [5] , [9] , [A7], and [A8] leads
directly to Eq. [13].or smaller.

AID JMR 1178 / 6j1c$$$204 06-01-97 21:54:40 maga



199WEAK-DIFFUSION THEORY FOR HETEROGENEOUS MEDIA

Cohen, F. H. Hochberg, and T. J. Brady, Magn. Reson. Med. 22,REFERENCES
293 (1991).

12. S. Majumdar and J. C. Gore, J. Magn. Reson. 78, 41 (1988).1. J. F. Schenck, Med. Phys. 23, 815 (1996).
13. R. P. Kennan, J. Zhong, and J. C. Gore, Magn. Reson. Med. 31, 92. B. Drayer, P. Burger, R. Darwin, S., Riederer, R. Herf kens, and

(1994).G. A. Johnson, Am. J. Neuroradiol. 7, 373 (1986).
14. C. R. Fisel, J. L. Ackerman, R. B. Buxton, L. Garrido, J. W. Belli-3. B. P. Drayer, W. Olanow, P. Burger, G. A. Johnson, R. Herf kens,

veau, B. R. Rosen, and T. J. Brady, Magn. Reson. Med. 17, 336and S. Riederer, Radiology 159, 493 (1986).
(1991).

4. F. W. Wehrli, J. C. Ford, M. Attie, H. Y. Kressel, and F. S. Kaplan,
15. D. A. Yablonsky and E. M. Haacke, Magn. Reson. Med. 32, 749Radiology 179, 615 (1991).

(1994).
5. J. C. Ford and F. W. Wehrli, Magn. Reson. Med. 17, 543 (1991).

16. C. P. Slichter, ‘‘Principles of Magnetic Resonance,’’ 3rd ed.,
6. J. C. Ford, F. W. Wehrli, and H.-W. Chung, Magn. Reson. Med. 30, Springer-Verlag, Berlin, 1990.

373 (1993). 17. A. Abragam, ‘‘Principles of Nuclear Magnetism,’’ Oxford Univ.
7. H. Chung, F. W. Wehrli, J. L. Williams, and S. D. Kugelmass, Proc. Press, Oxford, 1983.

Natl. Acad. Sci. USA 90, 10250 (1993). 18. J. Kärger, H. Pfeifer, and W. Heink, in ‘‘Advances in Magnetic
8. S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, Magn. Reson. Resonance’’ (J. S. Waugh, Ed.) , Vol. 12, Academic Press, San

Med. 14, 68 (1990). Diego, 1988.
9. J. W. Belliveau, B. R. Rosen, H. L. Kantor, R. R. Rzedzian, D. N. 19. X. Hong and W. T. Dixon, J. Magn. Reson. 99, 561 (1992).

Kennedy, R. C. McKinstry, J. M. Vevea, M. S. Cohen, I. L. Pykett, 20. J. Lian, D. S. Williams, and I. J. Lowe, J. Magn. Reson. A 106, 65
and T. J. Brady, Magn. Reson. Med. 14, 538 (1990). (1994).

10. R. Turner, D. Le Bihan, C. T. W. Moonen, D. Despres, and J. Frank, 21. R. A. Brooks, J. Vymazal, J. W. M. Bulte, C. D. Baumgarner, and
Magn. Reson. Med. 22, 159 (1991). V. Tran, J. Magn. Reson. Imaging 4, 446 (1995).
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